MongoDB – the perfect database system for e-commerce?

Adam Sosiński | Databases | 12.01.2022

MongoDB

One of the key challenges for programmers, architects and managers involved in e-commerce projects is the selection of an appropriate database for storing data representing products or services. Just as products are physically kept in warehouses, in the virtual world information about them is stored in databases. When choosing a database management system (DBMS) for your online store, you need to pay attention to a number of different aspects: flexibility, high availability, reliability, handling multiple inquiries and data timeliness. An example of a popular system addressing these needs is MongoDB, the capabilities of which I will discuss in this article.

E-commerce means more than online stores

In simple terms, e-commerce means commercial transactions conducted electronically on the Internet. By this, we mean sale-purchase transactions, as payment and delivery can be done either online or offline. Online stores are the most popular type of this trade, and for some people they equate to the concept of e-commerce itself. It is worth noting, however, that apart from e-shops, we can also distinguish auction sites, e-exchange offices, electronic banking and betting platforms.

The challenges for your e-commerce database

In the e-commerce industry, databases undertake special tasks.

A well-configured database system should:

  • guarantee data availability 24/7,
  • maintain a high polling rate during periods of increased usage,
  • save large amounts of data,
  • provide information about changes (e.g. the availability of given products from the product catalog) dynamically and on an ongoing basis.

This is especially important during peak sales periods, such as Black Friday or Cyber Monday, that can translate into an increased number of queries. For this reason, e-commerce companies should focus on database scalability.

Which to choose: relational databases or relational databases

Let’s take a closer look at data storage for e-commerce services. We can choose from several databases, the best-known of which are relational (SQL) and non-relational (NoSQL). Let’s take a look at the differences between them. To be more precise, SQL is a Structured Query Language, a language for retrieving data from a relational database. However, this type of database has been called an “SQL database”, so I will use this term for the purposes of comparison. It also makes it easier to remember the name of the second type – a NoSQL database – that is often referred to as “not SQL”.

There are 5 basic differences between them:

SQL NoSQL
clearly defined data relationshipsno relationship; the data in our database is loosely coupled  
data is stored in tablesdata stored in documents, graphs, as the so-called key-value
defined schemadynamic schema, unordered data
preferred in the case of multi-line operationspreferred when the speed of data acquisition is important
vertically scalablehorizontally scalable

As you can see, the NoSQL databases perfectly match the requirements and needs of the e-commerce market in terms of data availability and storage. Currently, the most popular database system of this type is MongoDB.

What is MongoDB?

MongoDB is a document database for easy creation and scaling. Documents are created and stored in BSON (Binary JSON) format. Thanks to the use of JSON, it’s very easy to convert the queries and results into a format that can “understand” the frontend code of the e-commerce application. It is also more understandable for humans. The NoSQL solution includes hierarchy, automatic fragmentation, and built-in replication for better scalability and high availability.

Now that we have a picture of what the main challenges are in e-commerce and are sure that MongoDB is a good choice for data storage, let’s learn more about how MongoDB can support the e-commerce industry.

Advantages of NoSQL databases in e-commerce – based on the example of MongoDB

Dynamic schemas

Thanks to dynamic schemas, the documents in the collection do not have to have the same fields, and a given field can have different types depending on the document. This increases the flexibility of mapping to entities or objects. However, practice shows that the structure of documents inside the collection is similar. To guarantee this, MongoDB introduced the ability to set validation rules per collection.

Easy hierarchization of data

Thanks to the use of the JSON format, it’s easy to structure the data. You can do this by embedding one document in another or by providing references. The use of a given method should be considered individually for each collection. Embedding is recommended because it allows you to obtain data with a single query, which improves the system’s performance. References are worth considering for more complex hierarchy representations or when the benefits of embedding do not outweigh the effects of data duplication (such as the need to monitor changes when replacing data).

Replication

MongoDB utilizes a concept called Replica Set, which is a set of nodes containing the same data. This enables data replication, the purpose of which is to increase availability and protect against database server failures. A properly designed architecture also allows for faster access to data.

We will discuss the key assumptions and replication mechanisms on the basis of the diagram below.

noSQL in ecommerce - MongoDB

The replica set consists of one node, the so-called Primary member, and Secondary members. There is also a special member of such a set, the Arbiter, which does not contain a copy of the data but is used to select an alternative in the event that the main server is unavailable.

Saving operations are performed only on the Primary instance, from which the built-in MongoDB mechanism then copies the data to the other instances.

By default, read operations also go through the Primary instance, but it’s possible to configure the nodes so that the secondary servers are used to handle queries, which may involve the occurrence of the so-called eventual-consistency, i.e. the delayed update of data.

The clocking mechanism (heartbeat). Each of the nodes (members) polls the others every 2 seconds to check their availability. If the main server is unavailable, a new one is selected.

Deploy a Replica Set — MongoDB Manual

This process consists in selecting the one with the highest priority from the remaining instances. According to documentation, the replica can have up to 50 nodes, of which only 7 can participate in the selection process (voting); the successor is chosen from among them. Other servers, named Non-Voting members, must have the properties votes and priority set to 0. Setting an uneven number of voting instances is recommended; hence, the minimum number of nodes in a replica set is 3.

Fragmentation

Fragmentation means the process of dividing a data set into smaller pieces. In doing so, you can scale your database horizontally, practically without any limits. For fragmentation, MongoDB uses a cluster that consists of:

  • Shard – the replica set that contains part of the collection (chunk),
  • Router – it works a bit like a load balancer and, based on the configuration, forwards orders to the appropriate subcollection to balance the load,
  • Config server – which stores the metadata and a cluster configuration.

The relationship between the components is presented in the following diagram:

MongoDB – the perfect database system for e-commerce? - JPro 2022.01.12 graphic MongoDB

For fragmentation, it is important to choose the right key and strategy. When selecting the document field that you wish to use as the key, you need to consider:

  • Cardinality – how many elements we can divide the collection into in relation to the key,
  • Repeatability – whether any value appears more often than the others,
  • Consistency – whether the new key values are not increasing / decreasing linearly,
  • Query frequency – the key should be used in the most frequent queries.

When it comes to strategies, there are two to take advantage of:

Hashed Sharding

With this strategy, MongoDB automatically generates Hash from the key field values. It works well when the key values change consistently. Hash increases the consistent distribution of documents between shards. The disadvantage is that in the case of inquiries about a given scope, it is unlikely that all documents will be in one shard. This results in polling all parts of the collection (chunks), because the router cannot clearly determine which shard the searched documents are located in.

Ranged Sharding

Each of the shards holds parts of the collection within a given key-value range. This strategy works well when the set of values for the key is large, but each of them does not repeat often. The main advantage is that you can target your inquiry to a specific shard or collection, which significantly affects the polling speed. The built-in MongoDB mechanism serves divide into parts and to allocate them. The mechanism ensures that they are consistently distributed and tries to maintain similarity in their sizes. When deciding on fragmentation, remember that MongoDB does not have an option allowing you to merge data – you only run fragmentation again using a different key.

Streams of change

As of version 3.6, MongoDB allows you to listen for changes in a selected collection, database or the entire system, except for the admin, premises and config collections. This is done by starting the cursor, which allows you to iteratively navigate through events related to a given range. Since this mechanism uses aggregation, you can also listen for specific changes or modify received notifications. The basic requirement is to use a replica set as notification takes place at the point of saving changes in the majority of those that are responsible for data storage.

Change streams use a special, limited oplog collection to store information on operations that have an impact on the current state of the data. Documents in this collection rotate, which means that when the new document reaches the size limit of the collection, the oldest ones are deleted. Therefore, you should choose the appropriate size for this collection, depending on the frequency of events, so that you can capture the selected one before it is removed.

Conclusion

According to predictions, the dynamic development of e-commerce in Poland will continue for the next few years. Customers’ requirements for websites or applications are growing. The most important factors in improving the Customer Experience include availability, speed and reliability. A properly configured database system such as MongoDB is resistant to failures, scalable, and allows you to hierarchize and store of large amounts of data, so it fulfils the needs of any e-commerce projects.

The author of the post is:

Senior .NET Developer / Technical Leader

A programmer of web solutions, working with modern technology stacks. He puts his family first, but also finds time for sport and expanding his knowledge of the .NET world. He believes that if you can share your knowledge and experience, why not do it?

Add comment: